Driver Sleepiness Detection System Based on Eye Movements Variables
نویسندگان
چکیده
Driver sleepiness is a hazard state, which can easily lead to traffic accidents. To detect driver sleepiness in real time, a novel driver sleepiness detection system using support vector machine (SVM) based on eye movements is proposed. Eye movements data are collected using SmartEye system in a driving simulator experiment. Characteristic parameters, which include blinking frequency, gaze direction, fixation time, and PERCLOS, are extracted based on the data using a statistical method. 13 sleepiness detection models including 12 specific models and 1 general model are developed based on SVM. Experimental results demonstrate that eye movements can be used to detect driver sleepiness in real time. The detecting accuracy of the specific models significantly exceeds the general model (P < 0.001), suggesting that individual differences are an important consideration when building detection algorithms for different drivers.
منابع مشابه
An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملThe Mechanical Design of Drowsiness Detection Using Color Based Features
This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...
متن کاملDriver Drowsiness Detection by Identification of Yawning and Eye Closure
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...
متن کاملDriver drowsiness monitoring using eye movement features derived from electrooculography
The increase in vehicle accidents due to the driver drowsiness over the last years highlights the need for developing reliable drowsiness assistant systems by a reference drowsiness measure. Therefore, the thesis at hand is aimed at classifying the driver vigilance state based on eye movements using electrooculography (eog). In order to give an insight into the states of driving, which lead to ...
متن کاملDesign an Intelligent Driver Assistance System Based On Traffic Sign Detection with Persian Context
In recent years due to improvements of technology within automobile industry, design process of advanced driver assistance systems for collision avoidance and traffic management has been investigated in both academics and industrial levels. Detection of traffic signs is an effective method to reach the mentioned aims. In this paper a new intelligent driver assistance system based on traffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015